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Nucleotides and their related metabolic products play key 
roles in many biological processes. Nucleotides can be syn- 
thesized endogenously and thus are not essential nutrients. 
Dietary nucleotides may, however, have beneficial effects 
upon the immune system, small intestinal growth and de- 
velopment, lipid metabolism, and hepatic function. The 
terms “semi-” or “conditionally” essential have been used 
to describe the role of dietary nucleotides in human nutri- 
tion. These nutrients may become essential when the en- 
dogenous supply is insufficient for normal function, even 
though their absence from the diet does not lead to a classic 
clinical deficiency syndrome. Conditions under which these 
nutrients may become essential include certain disease 
states, periods of limited nutrient intake or rapid growth, 
and the presence of regulatory or developmental factors that 
interfere with full expression of the endogenous synthetic 
capacity. ’ Under these conditions, dietary intake of the nu- 
trient spares the organism the cost of de novo synthesis or 
salvage and may optimize tissue function. 

Nucleotide biochemistry and metabolism 
Nucleotide chemistry and nomenclature 

Nucleotides (NT) consist of a ni~ogenous base, a pentose 
sugar, and one or more phosphate groups. The nitrogenous 
base is either a purine or a pyrimidine whose atoms are 
primarily derived from amino acids (Figure I). Pyrimidine 
bases are six-membered rings and include uracil (U), cy- 
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tosine (C), and thymine (T). Purine bases have a second 
five-membered ring and include adenine (A), guanine (G), 
hypoxanthine, and xanthine (Figure 2). A purine or pyrim- 
idine base linked to a pentose molecule constitutes a nucle- 
oside (NS). A nucleotide (NT) is a phosphate ester of a NS, 
and may occur in the mono-, di- , or triphosphate forms. The 
pentose is either ribose or deoxyribose (Figure 3); the ri- 
boNTs and deoxyriboNTs serve as the monomeric units of 
RNA and DNA, respectively. RNA and DNA are linear 
polymers consisting of four different NTs linked together by 
5’-3’ phosphodiester bonds. The immediate precursors for 
RNA synthesis are ATP, GTP, CTP, and UTP. The pre- 
cursors for DNA synthesis are dATP, dGTP, dCTP, and 
dTTP. Purine and py~midine NT nomenclature. is summa- 
rized in Table 1. 

Metabolic functions. Mammalian, bacterial, and plant 
cells all contain a variety of nucfeotides. Cellular NT may 
be found in millimolar concentrations and may have many 
metabolic functions including: 

1. 

2. 

3. 

4. 

5. 

Energy metabolism: ATP is the main form of cellular 
chemical energy, and also serves as the phosphate donor 
for the generation of other NTs.~~ 
Nucleic acid precursors: DNA and RNA are composed 
of monomeric units of NT.2d 
Physiological mediators: NT and their derivatives serve 
as mediators of many metabolic processes. For example, 
CAMP is a “second messenger,” cGMP is a mediator of 
several cellular events, ADP is critical for normal 
let aggregation, and adenosine is a vasodilator. 2x! 

late- 

Components of coenzymes: &enzymes such as NAD, 
FAD, and CoA are involved in many metabolic path- 
ways.2-6 
Activated in~~ediates: NTs serve as carriers of acti- 
vated intermediates for many reactions. For example, 
UDP-glucose is an intermediate in glycogen and glyco- 
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FIgure 1 Biosynthetic origin of the atoms in purine and pyrimidine 
bases. Reprinted with permission from Ref. 2. 
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Flgure 2 Structures of the major purine and pyrimidine bases. 
Reprinted with permission from Ref. 2. 

6. 

7. 

protein synthesis; ~DP-m~nose, GDP-fucose, UDP- 
galactose, and CMP-sialic acid are intermediates in the 
synthesis of glycoproteins; CDP-choline and CDP- 
ethanolamine are involved in phospholipid metabolism; 
and S-adenosylmethionine serves as a methyl donor.2d 
Allosteric effecters: Intracellular concentrations of NT 
regulate the steps of many metabolic pathways.24 
Cellular agonists: Extracellular NT’s may function as po- 
tent agonists, triggering intracellular signal transduction 
cascades including the CAMP and inositol-calcium path- 
ways. Evidence supports the existence of pyrimidine re- 
ceptors in addition to the well-studied purine recep- 
tor&7,8 
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Figure 3 Adenine nucleotides. 

Table 1 Nucleotide nomenclature 

Base Nucleoside 

Purines 
Adenine (A) 
Guanine (G) 
Hypoxanthine 

Pyrimidines 
Cytosine (C) 
Uracil (U) 
Thymine (T) 

Adenosine AMP 
Guanosine GMP 
lnosine IMP 

Cytidine 
Uridine 
Thymidine 

Ribo- 
nucleotide 

Deoxyribo- 
nucleotide 

dAMP 
dGMP 

CMP 
UMP 

dCMP 

dTMP 

Nucleotide metabolism 
The 5’-nucleotide derivative is the principal form of cellular 
purines and pyrimidines. Cellular concentrations vary 
greatly, with ATP being present in the highest concentra- 
tion. Free bases, NSs, and 2’- and 3’NT.s in the cell rep- 
resent degradation products of endogenous NTs, exogenous 
NTs, or nucleic acids. 

Cellular riboNT concentrations are in the millimolar 
range and remain relatively constant, while deoxyriboNTs 
are in the micromolar range and fluctuate greatly during the 
cell cycle. NT synthesis is a finely regulated metabolic 
pathway. Although the concentrations of individual com- 
ponents may vary, the total cellular NT concentration is 
fixed within narrow limits in normal cells. 

Purines and pyrimidines can be synthesized de novo. 
However, de novo NT synthesis is a metabolically costly 
process that requires a great deal of energy in the form of 
ATP. An alternative mechanism for maintenance of cellular 
NT pools is the NT salvage pathway in which preformed 
purine and pyrimidine bases and NSs are converted to NTs. 
The salvage pathway conserves energy and permits cells 
incapable of de novo synthesis to maintain NT pools. For 
example, erythrocytes cannot carry out de novo NT synthe- 
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sis and thus depend upon salvage to replenish NT pools. 
Enzyme activities of the salvage pathways are higher than 
those of the de novo synthetic pathway. 

Other enzymes important in NT metabolism include ki- 
nases. NTs are synthesized as the monophosphate, how- 
ever, most reactions requiring NT require the di- or triphos- 
phate form of NT. Kinases salvage NS to NT and convert 
the NS monophosphates to the di- and triphosphates.2-6 

Purine metabolism 

The purine ring is synthesized in mammalian cells from 
glycine, aspartate, glutamine, tetrahydrofolate derivatives, 
and CO, (Figure 1). All of the enzymes involved in purine 
NT synthesis and degradation are found in the cytosol of the 
cell. 

The first step in purine NT synthesis is the formation of 
phosphoribosylpyrophosphate (PRPP) from ribose-5- 
phosphate and ATP (Figure 4). The next step, in which 
phosphoribosylamine is formed from PRPP and glutamine, 
is the committed step in the de novo purine synthetic path- 
way. In subsequent steps, additional N and C atoms are 
added, and in the final step, the ring is closed to form IMP. 
IMP serves as the common precursor for AMP and GMP 
and is not found in significant quantities in the cell under 
normal conditions. Altogether, six high-energy phosphate 
groups of ATP are utilized for the synthesis of IMP, in 
addition to one molecule of aspartate, one of glycine, and 
two of glutamine.’ 

Purine NT synthesis is regulated at several points, in- 
cluding the committed step of 5-phosphoribosylamine syn- 
thesis and the branch point of IMP to GMP and to AMP. An 
appropriate balance of purine NT is maintained through the 
activities of various enzymes which regulate conversions of 
GMP and AMP back to IMP. 
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Figure 4 The pathways of purine metabolism. PRPP = 5-phos- 
phoribosyl-1-pyrophosphate, AMPRT = amidophosphoribosyl- 
transferase, APRT = adenine phosphoribosyltransferase, HGPRT 
= hypoxanthine-guanine-phosphoribosyltransferase, RNR = ribo- 
nucleotide reductase, AMPDA = adenylate deaminase, ADA = 
adenosine deaminase, PNP = purine nucleoside phosphorylase, 
and X0 = xanthine oxidase. Reprinted with permission from Ref. 3. 

There are two distinct enzymes involved in purine sal- 
vage: (1) hypoxanthine-guanine phosphoribosyltransferase, 
which catalyzes the conversion of guanine + PRPP to GMP 
and hypoxanthine + PRPP to IMP; and (2) adenine phos- 
phoribosyltransferase, which catalyzes the conversion of 
adenine + PRPP to AMP. The generation of AMP and 
GMP through these salvage reactions shuts off the de novo 
synthetic pathway. 

Purine NTs, NSs, and bases are degraded in humans to 
uric acid. Enzymes involved in purine degradation include: 
nucleases which show specificity for RNA or DNA and the 
3’,5’-phosphodiester bonds; nucleotidases and acid and al- 
kaline phosphatases which hydrolyze 3’- and 5’-NT; AMP 
deaminase and adenosine deaminase which are specific for 
adenine NT; and purine nucleoside phosphorylase which 
catalyzes the degradation of NS to base. In the final step of 
purine degradation, xanthine oxidase catalyzes the forma- 
tion of uric acid from hypoxanthine and xanthine. Molec- 
ular oxygen is a substrate, and H,O, is generated.24 

Pyrimidine metabolism 

The pyrimidine ring is synthesized de novo in mammalian 
cells from aspartate, glutamine, and CO,. In the pyrimidine 
de novo synthetic pathway, the ring is formed first, fol- 
lowed by addition of the sugar phosphate. One of the en- 
zymes involved in pyrimidine synthesis is located in the 
mitochondria, while the rest are in the cytosol. 

The first step in pyrimidine ring synthesis is the forma- 
tion of carbamoyl phosphate from glutamine and CO, (Fig- 
ure 5); subsequent steps yield orotate, which reacts with 
PRPP, the ribose-5-phosphate donor, to form orotidine 
monophosphate. UMP is synthesized by the decarboxyl- 
ation of orotidine monophosphate. The formation of cyti- 
dine NT proceeds from uridine NT but at the triphosphate 

ZATP, CO 1 
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RNA 
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4 I RNA 

palmine @amino i;obulyric acid 

Figure 5 The pathways of pyrimidine metabolism. CPS = carbam- 
ylphosphate synthase, ATC = aspartate transcarbamylase, DHO = 
dihydroorotase, DHODH = dihydroorotate dehydrogenase, UMPS 
= UMP synthase, RNA = ribonucleotide reductase, TS = thymidy- 
late synthase, UK = uridine kinase, TK = thymidine kinase. Re- 
printed with permission from Ref. 3. 
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level rather than at the monophosphate level. Four high- 
energy phosphate groups are utilized for the synthesis of 
UMP in addition to one molecule of aspartate and one of 
glutamine. In mammalian cells pyrimidine NT synthesis is 
regulated at the level of carbamoyl phosphate synthesis 
which is inhibited by UMP.’ 

Pyrimidines are salvaged to NT by the conversion of 
py~midine + PRPP to py~midine nucleoside monophos- 
phate. This reaction is catalyzed by pyrimidine phosphori- 
bosyltransferase 

The first step in pyrimidine degradation is the conversion 
to NS and then to the free base uracil or thymine. Cytidine 
is deaminated to uridine, which is dephospho~lated to ura- 
cil. The conversion of pyrimidine NT to NS is catalyzed by 
various nonspecific phosphatases. 

Uracil and thymine are further degraded by analogous 
reactions to beta-alanine and beta-aminoisobutyric acid. 
Beta-aminoisobutyric acid originates exclusively from 
thymine degradation. 24 

Nucleotide metabolism and the cell cycle 

The deoxy~bonucleotide pool is extremely small in resting 
cells. During DNA replication, however, the DNA pool is 
increased to support nucleic acid synthesis. The periods of 
the cell cycle include mitosis (M), gap 1 (G,), synthesis (S), 
and gap 2 (G2); DNA replication occurs during the S phase. 
In most cells, the periods of M, S, and G, are constant, 
while G, varies widely depending upon the cell doubling 
time. RNA and protein synthesis occur continuously, al- 
though at varying rates during the cell cycle. 

During the G, and early S phase, enzymes of purine and 
py~midine synthesis are elevated and DNA replication oc- 
curs. Many of the enzymes involved in NT interconversions 
are also elevated during the S phase. Rapidly growing tis- 
sues such as regenerating liver, embryonic tissue, intestinal 
mucosal cells and erythropoietic cells are geared toward 
DNA replication and RNA synthesis5 

Nucleotide metabolic disturbances 

Several disturbances in NT metabolism result in accumula- 
tion of inte~ediates, which are associated with a variety of 
diseases. The Lesch-Nyhan syndrome is characterized by 
hyperuricemia and neurological problems. This disorder is 
associated with a deficiency of HGPRTase, which catalyzes 
the conversion of hypoxanthine and guanine to NT. 

Immun~e~ciency diseases may also result from defects 
in purine NT metabolism. Adenosine deaminase deficiency 
is associated with a severe combined immunodeficiency in- 
volving T-cell and usually B-cell dysfunction. This disorder 
is not associated with overproduction of purine NT, al- 
though deoxyadenosine ~iphosphate levels are elevated 
which may inhibit DNA synthesis. The elevated adenosine 
may also be toxic to cells due to the resultant increase in 
intracellular CAMP levels. 

Purine nucleoside phosphorylase deficiency is associated 
with impaired T-cell function and normal B-cell function. 
The dGTP which accumulates in patients with this disorder 
may be toxic to the development of normal T cells. 

Gout is characterized by elevated blood uric acid levels. 

In this disorder, a variety of metabolic abnormalities lead to 
the overproduction of purine NT via the de novo pathway. 
Sodium urate crystals deposit in the joints of the extremities 
and may also contribute to renal disease. Most clinical 
symptoms of gout are associated with the insolubility of uric 
acid. 

Hereditary erotic aciduria is characterized by retarded 
growth, severe anemia, and the excretion of high levels of 
erotic acid. The biochemical basis of this relatively rare 
disease is the absence of the enzyme required to form UMP 
from orotate.5*6 

The de novo synthesis of purine and pyrimidine NT is crit- 
ical to normal cell replication, maintenance, and function. 
Antimetabolites are structural analogs of purines and pyri- 
midines that act as specific inhibitors of enzymes involved 
in NT metabolism. These compounds may be synthesized 
or isolated as natural products. Purine antimetabolites in- 
clude 6-mercaptopurine used in the treatment of acute leu- 
kemia, azathioprine for immunosuppression in organ trans- 
plant patients, acyclovir for the treatment of herpes virus 
infection, and allopu~nol for the treatment of gout and hy- 
peruricemia. Pyrimidine analogs used in the treatment of 
several forms of cancer include 5fluorouracil and cytosine 
arabinoside.5 

Nucleotide analogs as antiviral agents 
Acyclovir (acycloguanosine) and 3’-azido-3’-deoxy- 
thymidine (AZT) are purine and pyrimidine analogs used in 
the treatment of herpes virus (HSV) and human immuno- 
deficiency virus (HIV) infection, respectively. These com- 
pounds are metabolized by human cells to the phosphory- 
lated compounds to yield the active drug. Acyclovir serves 
as a substrate for the HSV-specific DNA polymerase. It is 
incorporated into the viral DNA chain, resulting in chain 
te~ination. AZT blocks HIV replication by inhibiting 
HIV-DNA polymerase . ’ 

Naturally occurring sources of nucleotides 

ruin milk 

NTs are a component of the nonprotein nitrogen fraction of 
human milk. Nonprotein nitrogen accounts for approxi- 
mately 25% of the total nitrogen in human milk’ and in- 
cludes com~unds such as amino sugars and camitine, 
which play specific roles in neonatal development. In con- 
trast, nonprotein nitrogen accounts for only 2% of the total 
nitrogen in cow’s milk and less than 20% in most cow’s 
milk-based infant formulas.’ Many of the nonprotein nitro- 
gen components of human milk are present in signi~c~tly 
lower quantities in cow’s milk and cow’s milk-derived in- 
fant formulas. lo 

NTs are reported to account for 2 to 5% of human milk 
nonprotein nitrogen. ” NT nitrogen may contribute to the 
more efficient protein utilization of the human milk-fed in- 
fant, who receives a relatively low protein intake compared 
with the formula-fed infant. ‘i 

Gil and Sanchez-Medina measured the NT content of the 
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milks of cows, goats, sheep,12 and humans.13 While the 
total NT content was lowest in human milk, relative quan- 
tities of cytosine and adenine derivatives were higher. A 
wide range of NT concentrations, from 0.4 to over 7 mg/ 
dL, have been reported for human milk~11~1~-20 Purines, 
pyrimidines, NT derivatives, and cyclic NTs are reported, 
with values being highest at earlier stages of lactation. 

Orotate, the major NT of cow’s milk, is present in siq- 
nificant quantities in cow’s milk-based infant formulas”~ * 
but not in human milk. High levels of dietary erotic acid 
cause hepatic lipid accumulation,21 however, this effect is 
unique to the rat.22,23 

In addition to free NTs, NSs, and bases, human milk 
also cont~ns nucleic acids, con~buted primarily by cellu- 
lar elements. The highest concentration of cells occurs in 
colostrum, with the principal leukocytes being neutrophils 
and macrophages. 24 Sanguansermsri et al.25 reported DNA 
levels of 1 to 12 mg/dL, and RNA levels of 10 to 60 mg/dL 
in human milk. DNA and RNA levels in cow’s milk were 
1 to 4 mg/dL and 5 to 19 mg/dL, respectively. Digestion 
and absorption of nucleic acid NT occurs in the adult hu- 
man 26-3o however, the metabolic fate of nucleic acids in- 
gested by the breast-fed infant is unknown. 

Inosine and its metabolites enhance iron absorption in 
the rat by increasing the activity of intestinal xanthine ox- 
idase.31 Xanthine ox&se, p resent in human milk,32,33 cat- 
alyzes the reduction of ferritin iron to ferrous iron and thus 
increases it’s bioavailability.34,35 Janas and Picciano” 
speculated that human milk inosine contributes to the en- 
hanced iron absorption in the breast-fed infant.36 However, 
other investi 

q 
ators do not report the presence of inosine in 

human milk. 21g 
Human milk is generally considered to be the “gold 

standard” for infant feeding, and infant formulas are usu- 
ally manufactured to be as similar to human milk as possi- 
ble. Additional studies utilizing standardized methodology 

for collection and analysis are needed for accurate determi- 
nation of human milk NT content. NT interaction with other 
human milk components that may affect NT bioavailability 
and biological action should also be considered in the de- 
sign of NT supplemented infant formulas. 

The role that human milk NTs play in the health of the 
breast-fed infant is not known, and the issue of NT supple- 
mentation of infant formulas remains controversial. How- 
ever, infancy is characterized by rapid tissue growth and 
therefore increased nucleic acid synthesis. An exogenous 
source of NT supplied by formula or human milk may op- 
timize tissue growth and differentiation by sparing the met- 
abolic costs of de novo synthesis and salvage. NT supple- 
mented fo~ula may be p~icul~ly irn~~~t for the infant 
born prematurely, since preterm birth is associated with 
limitations of many metabolic functions and limited oppor- 
tunities for breast-feeding. 

Infant formulas supplemented with NT at levels similar 
to those reported for human milk are currently being mar- 
keted in several countries, including the United States. Ef- 
fects as;syj$d with the feeding of these formulas are re- 
ported. ’ 

Food sources and efsects on growth 

The nucleotide content of foods has been of interest primar- 
ily as it relates to dietary purine effects upon gout. Foods 
that contain cellular elements supply dietary NT, primarily 
as nucleoproteins. Organ meats, seafood, and legumes are 
especially rich sources 17so (Table 2). Data regarding the 
pyrimidine content of food are scarce. However, since nu- 
cleoproteins contain equimolar ratios of purine and p rim- 
idine bases, contents in food are likely to be similar. 7 

NTs, particularly IMP and GMP, are used as flavor en- 
hancers. *51,52 These NTs reportedly produce the sensation 
of “greater body and smoothness” in liquid products. In 

Table 2 Purine and RNA content of selected foods. Adapted with permission from Ref. 50 

Adenine Guanine Hypoxanthine Xanthine Total purines RNA Protein 
Ow/lO 9) O-WOO 9) b-d100 9) (w/l 00 9) @xi/l 00 9) @w/l 00 9) (“/I 

Organ Meats 
Beef liver 
Beef kidney 
Beef heart 
Beef brain 
Pork liver 
Chicken liver 
Chicken heart 

62 74 61 0 197 268 20 
42 47 63 61 213 134 18 
15 16 38 102 171 49 19 
12 12 26 112 162 61 11 
59 77 71 82 289 259 22 
72 78 71 22 243 402 20 
32 41 12 138 223 187 18 

Fresh seafood 
Anchovies 
Clams 
Mackerel 
Salmon 
Sardines 
Squid 

Dried legumes 
Garbanza bean 
Split peas 
Lentils 
Blackeye peas 
Pinto bean 

8 185 6 212 411 341 
14 24 12 86 136 85 
11 26 5 752 194 203 
26 80 11 133 250 289 

6 118 6 215 345 343 
18 15 24 78 135 100 

20 
17 

fZ 
23 
15 

17 14 18 7 56 356 21 
88 74 11 22 195 773 21 
54 51 15 42 162 140 28 

104 82 20 16 222 306 22 
46 39 25 34 144 485 20 
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soups these characteristics are associated with products con- 
taining meat derivatives.‘7 A pleasant “fifth” taste, 
umami, includes substances such as IMP and glutamic 
acids3 and is also associated with protein-rich foods. Tox- 
icology studies demonstrated that IMP and GMP fed to 
animals at 8% of the diet for several months did not produce 
adverse effects. I7 

Kobata3* reported that infants consumed increased quan- 
tities of cow’s milk when NTs were added and speculated 
that taste was improved. Other investigators, however, re- 
port no effect of feeding NT-supplemented formula upon 
weight gain. 1pV37*39--49 

The role of NTs as flavor enhancers implies that the 
addition of NTs to foods may increase the level of intake. 
Therefore, intake and somatic growth should be carefully 
considered in the design and inte~re~tion of dietary NT 
supplementation studies. Increased body weight in animals 
fed a NT-supplemented diet has been reported, however, 
observed biologic effects persisted when a per-feeding 
model was utilized.54 

A~orption and me~~lism 
Oral intake of NTs, NSs, and nucleic acids increases serum 
and urinary de radation products in animals,50~5s~J6 and 

ce adult humans.* 3o Dietary nucleic acids have the greatest 
influence upon serum uric acid levels,26*27*29 and a maxi- 
mum safe limit of RNA in the diet of 2 g/day has been 
suggested. 26728V57 These observations provide presumptive 
evidence of NT absorption. 

Nucleoproteins in foods are converted to nucleic acids in 
the intestinal tract by the action of proteolytic enzymes. The 
nucleic acids are degraded by pancreatic nucleases to a mix- 
ture of mono-, di-, tri-, and polyNT. Ribonuclease and 
deox~~nuclease are specific for RNA and DNA, respec- 
tively. Intestinal polynucleotidases or phosphoesterases 
supplement the action of pancreatic nucleases in producing 
mononucl~tides from nucleic acids. The liberated NTs are 
then hydrolyzed to NSs by alkaline phosphatase and nucle- 
otidases, and may be further broken down by nucleosidases 
to produce purine and py~midine bases5s6 (Figure 6). In- 
vestigations in animals suggest that NSs are the primary 
form absorbed,‘V569J8 and that over 90% of NSs and bases 
are absorbed into the enterocyte.59Y60 

Transport of NSs into the enterocyte occurs via both 
facilitated diffusion and spcific Na+-dependent carrier- 
mediated mechanisms.6’” The upper region of the small 
intestine has the greatest absorptive capacity.64 Once ab- 
sorbed, most of the NSs and bases are rapidly degraded 
within the enterocyte, and catabolic products are excreted in 
the urine and intestine.56’59*66 

Catabolic enzymes for purities and pyrimidines gedom- 
inate over anabolic enzymes in the small intestine, which 
may also serve as an extrarenal route for the elimination of 
uric acid in humans.68769 The highest levels of purine cat- 
abolic enzymes are found in the upper alimentary tract7’ 
Chinsky et al. 7’ found that adenosine deaminase was one of 
the most abundant proteins of the epithelial lining of the 
alimentary mucosa in mice. Levels were low at birth and 
achieved ver& high levels within the frost few weeks of life. 
Witte et al. report that from the tongue to the ileum, 

diverse epithelial cell types lining the lumen of the mouse 
gastrointestinal tract strongly coexpress each of the five key 
purine catabolic enzymes, with dramatic increases in the 
expression of each enzyme occurring during postnatal mat- 
uration of the gastrointestinal tract. In light of these high 
levels of purine catabolism, the authors presume that exog- 
enous purine nucleotides are probably not nutritionally sig- 
nificant. 

Nucleic acids and their components are also released by 
the cellular turnover of the intestinal mucosa, yielding up to 
30 mg of nucleic acid per day in the rat.& The metabolic 
fate of these endogenously released nucleic acids is not 
known. 

Despite extensive catabolism, tracer studies in animals 
indicate that 2 to 5% of dietary NTs are incorporated into 
tissue pools, primaril 
skeletal muscle.5p*73i Y 

within the small intestine, liver, and 
4 Incorporation into tissues is report- 

edly increased at younger ages3* Gross et al.75Y76 also dem- 
onsets signi~c~~y increased salvage and retention, and 
decreased catabolism, of orally administered bases and NSs 
in the fasted versus the fed state. Decreased catabolism may 
be due to a fasting-elated decrease in xanthine oxidase 
activity.75,77 

Extensive salvage of purines and pyrimidine NTs has 
been demonstrated in intestinal tissues,7s80 however, the 
capacity for de novo synthesis remains unclear. Investi a- 
tors have re 
and limited w  

orted the presence of,80si the absence ofY7 s: *‘* 
de novo NT synthesis within intestinal tissues. 

Dietary NT may affect gene expression of intestinal en- 
zymes. Feeding a purine- and pyrimidine-free diet to adult 
rats resulted in a highly signi~G~t decrease in total RNA 
and protein in the small intestine and colon, suggesting a 
mechanism by which dietary components differentially con- 
trol the synthesis of specific proteins synthesized in the 
body.84 

In summary, most orally administered nucleic acids, 
NTs, NSs, and bases are readily catabolized and excreted. 
However, tissue retention is increased during periods of 
rapid growth and limited food intake. The de novo synthetic 
capacity of m~mali~ gastrointestinal tissues remains un- 
clear. Further studies are needed to characterize the metab- 

Figure 6 Digestion and absorption of nucleic acids and their re- 
lated products. Reproduced with permission from Ref. 4. 
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olism of NT and NT derivatives in human gastrointestinal 
tissues and the impact of conditions such as immaturity, 
mucosal injury, and limited nutrient intake. The limited 
data regarding pyrimidine absorption and metabolism also 
suggest areas for additional study. 

Gastrointestinal effects 

Growth and differentiation 

Dietary NT may play a role in the developing gastrointes- 
tinal tract. Uauy et al. 85 found increased mucosal protein, 
DNA, villus height, and disaccharidase activities in the in- 
testine of weanling rats fed diet supplemented with 0.8% 
w/w dietary NT. Feeding 0.21% w/w dietary NT to wean- 
ling mice was associated with an increase in small bowel 
weight (as percent body weight) and weight/unit length; 
however, disaccharidase activities were not affected. Sup- 
plementation with AMP alone significantly increased j$u- 
num wall thickness, protein, and villus cell number.8 *87 
Other investigators report increased mucosal growth, ma- 
turity, and crypt cell proliferation in rats administered a 
NS/NT-supplemented TPN solution,88’89 and intestinal hy- 
peremia in newborn swine following in&alumina1 NT infu- 
sion 9ov91 

Response to injury 

Dietary NT effects on diarrhea1 disease were recently stud- 
ied in infants living in a relatively contaminated environ- 
ment in urban Chile. 49 NT-supplemented infant formula 
was fed to 141 infants, and unsupplemented formula to 148 
infants. Those who received supplemented formula experi- 
enced fewer episodes of diarrhea (109 versus 140), although 
clinical characteristics of the episodes and the pattern of 
enteropathogens isolated were not affected. 

Beneficial effects of dietary NT upon intestinal injury 
have also been demonstrated in animals. The intestinal tis- 
sue content of DNA and the activities of lactase, maltase, 
and sucrase were increased following chronic diarrhea in 
rats whose diets were supplemented with NT. NT had no 
effect, however, upon intestinal dissacharidase activities in 
control rats.92 Quan et a1.93 report that dietary NT supple- 
mentation decreased mortality and intestinal inflammation, 
and increased disaccharidase activities in rats following ra- 
diation-induced intestinal injury. 

Intra-arterial infusion of adenosine interferes with leuko- 
cyte adherence and granulocyte extravasation in the inres- 
tinal mucosa during ischemia and reperfusion,94 and atten- 
uates the platelet-activating factor-induced adhesion of leu- 
kocytes and endothelial cells in postcapillary venules.95 
Luminal infusion of NT may also have effects upon intes- 
tinal tissues. Bustamante et a1.91 subjected isolated loops of 
piglet ileum to ischemia and reperfusion. Luminal infusion 
of a NT mixture was associated with reductions in leukocyte 
accumulation, protein leak, and nitrite production, and with 
intestinal hyperemia, particularly in younger animals. Ef- 
fects were not changed significantly in the presence of an 
adenosine antagonist, although purine receptor specificity 
of the agent was not evident. Hypoxanthine was not in- 
creased in the intestinal mucosa in the presence of NT. The 

latter observation is significant, since xanthine oxidase cat- 
alyzes the degradation of adenine NT to hypoxantbine, xan- 
thine, and uric acid during ischemia. Xanthine oxidase is a 
potential source of oxygen-free radicals and may play a role 
in the development of reperfusion damage to tissues.9”98 

Intestinal jlora 

Bifidobacteria predominant in the stools of breast-fed in- 
fants, while gram-negative bacteria predominate in those of 
infants fed cow’s milk-based formulas.993100 Bifidobacteria 
lower the pH of intestinal contents via hydrolytic action on 
various sugars. The lower pH may impede the proliferation 
and/or growth of pathogenic species such as Bacteroides 
and Clostridium. Bifidobacteria growth is enhanced in vitro 
when a selective medium with added nucleic acids is uti- 
lized. lo1 In vivo as well as in vitro effects of NT upon 
bifidobacteria growth are suggested by a report of increased 
percentages of bifidobacteria and enterobacteria in the 
stools of infants fed NT-supplemented formula.40 

Intestinal cell lines 

In vitro studies demonstrate effects of exogenous NT upon 
the proliferation and differentiation of intestinal cell 
lines. 1023103 The uptake and transport of NS by a human 
colon carcinoma cell line, Caco-2, and a normal rat small 
intestine epithelial cell line, IEC-6, were characterized. lo2 
NT and NS were efficiently taken up by Caco-2 cells and 
were substantially metabolized during absorption by epitbe- 
lial monolayers. The addition of NT enhanced the expres- 
sion of the brush border enzymes sucrase, lactase, and al- 
kaline phosphatase when the Caco-2 cell culture was 
stressed by glutamine deprivation. Enzyme activity was en- 
hanced when NTs were added to the culture medium of 
IEC-6 cells, which require extracellular matrix (Matrigel) 
for brush border enzyme expression. These data suggest 
that exogenous NT may increase the growth and maturation 
of normal enterocytes as well as reduce their dependence 
upon exogenous glutamine. lo3 

Due to rapid turnover, tissues of the gastrointestinal tract 
require increased levels of NT as precursors for nucleic acid 
synthesis. An exogenous source of NT may optimize tissue 
function particularly during periods of accelerated growth 
and during recovery from mucosal injury when the endog- 
enous supply may limit nucleic acid synthesis. It is not 
known, however, if dietary NT effects are due to direct 
incorporation of NT into gastrointestinal tissue nucleic acid 
and/or to other biological mediator effects of NT. Addi- 
tional studies utilizing whole animal models and adult and 
fetal intestinal organ culture will help to define the role of 
dietary NT in this metabolically active tissue. 

Hepatic effects 

The liver plays a major role in meeting the body’s NT 
requirements through active synthesis and release of NT for 
use by other tissues. 1W3105 The hepatic supply of NT is 
maintained through de novo NT synthesis and salvage in 
addition to sodium-dependent and independent transport of 
NS into the liver.106*1 7 Extracellular NT and NS modulate 
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hepatocyte growth”’ and regenerationms Following he- 
patic injury NT synthesis and salvage are activated, and 
regeneration of new tissue is accomplished by accelerated 
synthesis of RNA and DNA. ‘lo 

Ogoshi et al. report that a parenterally administered NT/ 
NS mixture improves hepatic function and promotes earlier 
restoration of nitrogen balance following liver injuryl” or 
partial hepatectomy ’ l2 in rats. When the NT/NS mixture 
was infused 72 hr after partial hepatectomy in rabbits, the 
mit~hon~al phospho~lation rate and DNA concen~ation 
in remnant liver was increased.‘13 Earlier infusion, how- 
ever, was associated with a decrease in the mitochondrial 
phosphorylative activity. ’ l4 NT infusion is also reported to 
enhance hepatocyte res iration and improve survival fol- 
lowing hypovolemia. 11s 

Novak et al. 54 report that weanling mice fed NT-free diet 
had increased hepatic cholesterol, lipid phosphorous, and 
serum bilirubin, and decreased liver weight (as percent of 
body weight) and glycogen when compared with animals 
fed 0.21% w/w NT. Animals fed diet supplemented with 
AMP alone represented a greater contrast to animals fed 
NT-free diet than did animals fed a NT mixture, which may 
relate to the increased hepatic into ration 

Y enine versus other purines,5g*73~74*11 
of dietary ad- 

or to adenosine’s role 
in increasing hepatic blood flow. ’ I7 

These studies suggest that exogenously administered NT 
may affect hepatic com~sition and function. Dietary NT 
may be especially important in meeting NT needs when the 
liver’s capacity to supply preformed NT is diminished due 
to disease or injury. Further studies are needed to determine 
if the beneficial effects of parenterally administered NTlNS 
upon hepatic function can be accomplished with oral ad- 
ministration. 

Immunologic effects 

Cellular immunity 

Investigators have demonstrated a role of dietary NT in 
maintenance of the cellular immune response. While the 
mechanism is unclear, data suggest that exogenous NTs 
supplied by the diet contribute to the pool of NT available 
to stimulated leukocytes, which rapidly turnover and thus 
have increased NT requirement. Activation of lympho- 
cytes causes a rapid increase in the synthesis of NTs, which 
are required first for the increase in energy metabolism and 
later as precursors for nucleic acid synthesis.“* Induction 
of lymph~yte prolifemtion is accomp~ied by a dramatic 
increase in intracellular NT pools,’ l9 and the expression of 
large numbers of transmembrane NS transporters.‘20 

Cohen et al.“’ demonstrated that de novo purine bio- 
synthetic activity is present in S-phase thymic lymph~ytes. 
G, phase lymphocytes, however, may have only salvage 
pathways to maintain their purine nucleotide pools. Peri- 
gnon et al. 122 found a limited capacity of lymphoc es to 
salvage pyrimidines, while Marijnen and associates’ r 3 sug- 
gest that the NT salvage pathway may not be capable of 
providing sufficient purine NT for proliferating lympho- 
cytes. These studies suggest that proliferating lymphocytes 
require an exogenous supply of NT for optimum function. 

Feeding ~-supplemented diet to mice has been associ- 

ated with increases in the following immune parameters: (1) 
graft versus host disease mortality,‘24 (2) rejection of allo- 
geneic rafts, 
ity, 8 126*1 7 

‘25,126 (3) delayed cutaneous hypersensitiv- 
(4) alloantigen-induced lymphoproliferation,’ l6 

(5) reversal of malnutrition and starvation-induced immu- 
nosuppression, 128*129 (6) natural killer cell activity and in- 
terleukin-2 production, ‘30 (7) resistance to challenge with 
Staphylococcus aureus131,132 and Candida albicans,‘33 (8) 
macrophage phagocytic ;;lacity,131 and (9) spleen cell pro- 
duction of interle~n-2 and expression of interleukin-2 
receptors and lyt- 1 surface markers. 13’ 

In most of these studies, the addition of RNA or uracil 
restored immune function, which may relate to the limited 
capacity of rapidly proliferating lymphocytes to salvage py- 
rimidines. 122 It has further been suggested that the rapid 
turnover of plasma uridine indicates a role of this NS in the 
metabolism of pyrimidines by various tissues. lo6 

In contrast to these studies, oral RNA*36 or intraperito- 
neally administered individual nucleosides137 had no effect 
against methicillin-resistant Staphylococcus QureuS infec- 
tion in mice. Intraperitoneal administration of a NT/NS 
mixture, however, resulted in increased survival and lower 
recoveries of viable organisms from the kidney and 
spleen. 137 

A study of human infants demonstrated increased natural 
killer cell activity and interleukin-2 production in infants 
fed NT-supplemented formula or breast milk compared with 
infants fed nonsupplemented formula.46 I-Iematologic pro- 
files, incidence of documented infections, and rate of 
growth did not differ between infants fed NT-supplemented 
or nonsupplement~ formula. Al~ough the sample size was 
small, results suggest that NT in human milk may contrib- 
ute to the previously re orted enhanced cellular immunity 
of the breast-fed infant. % 

Van Buren et al. 134 propose that dietary NTs exert ef- 
fects upon immune responsiveness by acting upon the T 
helper/inducer population with the predominant effect upon 
the initial phase of antigen processing and lymphocyte pro- 
liferation. The presumed mechanism is suppression of un- 
committed T lymphocyte responses, as demonstrated by 
higher levels of a specific intracellular marker for undiffer- 
entiated lymphocytes in primary lymphoid organs in mice 
fed a NT-free diet.13* A regulatory role of dietary NT in 
immunohemato~iesis has also been proposed. 139 Rudolph 
et al.r40 suggest that dietary NT effects upon immunity were 
not previously observed since they are only evident under 
conditions of stress such as immune challenge. 

Humoral immunity 

Jyonouchi et a1.131*142 report that murine spleen cells 
primed with T cell-dependent antigen displayed a signifi- 
cant increase in the number of antibody-producing cells 
when RNA was added to the culture. No increase was noted 
in the absence of T cells.142 In contrast, antibody produc- 
tion in response to T cell-inde~n~nt antigens, and non- 
specific polyclonal B cell activation were not increased by 
the addition of RNA.142,143 RNA also increased IgM and 
IgG production in response to T cell-dependent stimuli in 
mononuclear cells from human peripherai’44 and umbilical 
cord blood. 14’ Treatment with ribonuclease, but not deoxy- 
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ribonuclease, nullified RNA effects. 14’ The actions of RNA 
were reduced by chemical degradation but not by the re- 
moval of small oligonucleotides. 146 The investigators con- 
clude that yeast RNA affects specific antibody responses to 
T-cell dependent antigens and that these effects are largely 
attributable to polynucleotides . 

Additional in vitro studies suggest the following effects 
of p01yNT’~? (1) influence antibody production via effects 
on T-helper cells at the initial stages of antigen presentation; 
(2) modulate the humoral immune response by interaction 
with cell surface molecules of T cells or other linage cells; 
(3) suppress nonspecific activation of T cells in the presence 
of antigen stimulus; and (4) increase specific antibody re- 
sponse mediated primarily through resting T cells. 

Dietary NT may also produce in vivo effects upon hu- 
moral immunity. Specific antibody responses to T cell-de- 
pendent antigen were significantly decreased in mice fed 
NT-free diet. 146 Responses to T cell-independent antigens 
and to a nonspecific polyclonal B cell activator, however, 
were not affected. The feeding of NT-free diet to mice was 
also associated with lower numbers of immunoglobulin M 
and G secreting cells in the spleen, and with T cells less 
capable of inducing T-dependent antibody production in 
vitro. 14’ 

Nucleotides and immunity 

These studies demonstrate significant in vivo and in vitro 
effects of dietary nucleotides upon both cellular and hu- 
moral immunity. Dietary NT enhancement of immunity 
may be particularly important for individuals at increased 
risk of acquiring infections. Infants, particularly those born 
prematurely, and individuals with disease-related immuno- 
suppression are included in this category. 

The mechanism of dietary NT effects upon immunity are 
unknown. Most dietary NTs are readily metabolized and 
excreted, however, a significant proportion of retained NTs 
are found in gastrointestinal tissues. Gut-associated lym- 
phoid tissue can initiate and regulate T-cell development 
and may act as a thymus analog. 148 Dietary NT effects upon 
peripheral immunity may be mediated in part via effects 
upon this important, but poorly understood, immune tissue. 

Use of nucleotides as a nutritional supplement 

Recognition of the relationship between malnutrition and 
immunosuppression has led to the design of feeding formu- 
las that might enhance immunocompetence. Enteral for- 
mula with added NT, fish oil, and arginine (Impact, Sandoz 
Pharmaceuticals, East Hanover, NJ USA) was studied. 
Twenty septic or critically ill adult patients were random- 
ized to receive either Impact or an isocaloric high-nitrogen 
enteral formula (Osmolite, Ross Laboratories, Columbus, 
OH USA) for an average of 9 days. 149 Lymphoprolilferative 
responses to mitogen and antigen were significantly higher 
in the Impact-fed group, and the duration of hospital stay 
was shorter, although these differences were not statistically 
significant. In a second study, Osmolite and Impact were 
studied in 85 postoperative gastrointestinal cancer pa- 
tients. “a Caloric intake was equivalent in both groups, 
while nitrogen intake and balance were lower in the Osm- 

olite-fed group. Infectious wound complications and the 
length of hospital stay were lower, and in vitro lymphocyte 
mitogenesis was higher in the Impact-fed group. 

Additional studies in animals have demonstrated in- 
creased survival and enhanced natural killer cell activity 
following challenge with Listeria monocytogenes in mice 
fed Impact versus Osmolite.“’ Kulkami et al. 135 also report 
an additive effect of RNA, fish oil, and arginine in enhanc- 
ing lymph node response to injected allogeneic spleen cells. 

Nutritional adequacy of the diet significantly enhances 
wound healing and improves recovery rates for hospitalized 
patients. NT may be a dietary component that contributes to 
these beneficial effects. Further studies are needed to de- 
termine if routine incorporation of NT into enteral feedings 
for hospitalized patients is justified. 

Effects on lipids 

Long chain polunsaturated fatty acids 

Feeding a NT-supplemented formula has been associated 
with increases in lon 

9 erythrocytes of term4 
chain polyunsaturated fatty acids in 

‘152 and preterm45 infants, and in the 
plasma of term infants39741 and in rats.15s-155 An increase in 
plasma arachidonic acid in rats was associated with in- 
creased thromboxane B, levels. 153 In most studies absolute 
levels, and not percentages, of very long chain fatty acids 
were increased with NT supplementation. These data sug- 
gest that dietary NTs play a role in the conversion of 18C 
essential fatty acids to 20-22C very long chain polyunsat- 
urated fatty acids. Other investigators, however, found no 
effect of dietary NTs upon long chain polyunsaturated fatty 
acids in the livers54 or erythrocytes of mice (unpublished 
observations) or in erythrocytes of infants156 (unpublished 
observations). 

Serum lipoproteins 

Sanchez-Poza et a1.41 report that term infants fed NT- 
supplemented formula or human milk had lower VLDL and 
higher HDL levels at 1 month of age compared with infants 
fed unsupplemented formula. More recently the investiga- 
tors report that NT supplementation of formula fed to pre- 
term infants resulted in increased levels of several plasma 
lipoproteins; effects in term infants were less significant. 
The authors speculate that dietary NTs enhance lipoprotein 
synthesis particularly in the intestine.” In contrast Villar- 
roe1 et a1.43 found no effect of NT-supplemented formula 
upon serum lipoprotein levels in infants. 

Alterations in tissue levels of very long chain fatty acids 
and serum levels of lipoproteins may have significant health 
effects. Additional studies are needed to further characterize 
dietary NT effects upon lipid metabolism. 

Effects of individual nucleotides 

Data regarding the effects of feeding individual NTs are 
limited. Orally administered purines have been the most 
extensively studied due to their effects on gout. Oral hypo- 
xanthine, AMP, GMP, IMP, and adenine, but not guanine 
and xanthine, elevate serum uric acid levels.30 The metab- 
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olism of dietary adenine is different from that of other pu- 
tines in that a i;reater portion is absorbed and inco~mt~ 
into tissues,73’ 4T116 particularly during the fasted state. 
Adenine may be absorbed with minimum alteration and is 
the most extensively reutilized purine, in contrast to other 
purines that are extensively degraded to uric acid in the 
gut.59 Further, up to 20% of orally administered adenine 
may be recovered unmetabolized in the portal vascula- 
ture.60 Excessive intake of adenine reduces growth rates in 
animals, 50*1s7~158 however, these effects are seen only when 
adenine is fed in the free form and not as the NS or NT. *‘s 

Adenosine administered intravenously has significant ef- 
fects upon vascular, cardiac, and neuronal tissues,159 and is 
approved for use in the treatment of paroxysmal supraven- 
tricular tachycardia. Many of adenosine’s biologic effects 
are due to its role as a potent vasodilator.160 Adenosine 
serves as an intrinsic dilator through which portal blood 
flow regulates hepatic arterial blood flow,‘17 and also stim- 
ulates hepatic glucose production. 163 Intraarterial infusion 
of adenosine to the small intestine increases blood flow to 
the intestinal ~all’*‘~ and mucosal layer.16s9166 Adeno- 
sine further regulates postprandia1163”67 and reactive hyper- 
emia 164*168 and when applied to the serosa increases blood 
flow{@ and arrests inflammatory changes associated with 
reperfusion-induced injury. 17’ 

Intraluminal administration of adenine NT affects the 
con~actility of smooth muscle in rat du~enum in an age- 
dependent manner. 17’ Kolassa et al.‘* report that adenosine 
uptake by intestinal epithelium is faster than that of other 
purines and suggest that adenosine is the most important 
source for m~nten~ce of purine NT in intestinal epithe- 
lium.79 

In addition to its vasodilatory effects, extracellular aden- 
osine and its metabolites serve as intercellular signals that 
stimulate cell division and morphogenesis, regulate cellular 
response to injury,‘72 and regulate blood vessel growth.173 
It has been postulated that adenosine is a hormone or a 
hormone second messenger. 174 

The effect of oral administration of adenosine upon these 
activities is unknown. Small intestinal and hepatic effects in 
animals fed diets supplemented with AMP alone, however, 
may be related to one or more of these phenomenon.s4~87 

Inosine pranobex175 
phate’76 

and methyl inosine monophos- 
are synthetic compounds derived from inosine 

which appear to have immunomodulating activity. Oral ad- 
ministration of these compounds augments proliferative re- 
sponses to T-cell mitogens, 176 increases plaque forming and 
delayed-hy~rsensitivity responses, ‘77 and exerts antiviral 
and antitumour activities17’ in both mice and humans. In 
multicenter trials involving HIV-positive patients without 
AIDS, daily administration of a 3 to 4 g dose of isoprinosine 
was associated with a si~nific~t decrease in the develop- 
ment of new infections. 78-‘81 Hadden et al.‘** postulate 
that the similarity of these compounds to the hypothetical 
structure of transfer factor provides the basis for these ac- 
tivities. 

Fewer studies report the biologic role of extracellular 
pyrimidines. In many studies of NT supplementation in 
mice, orally administered uracil significant1 enhanced im- 
munity while adenine did not. 127-129*‘31-13 r These effects 
may relate to the limited capacity of lymphocytes to salvage 

pyrimidines and/or to the potentially greater need of divid- 
ing lymphoblasts for py~midine NT.i2* In fed rats, the 
uridine concentration in hepatic venous blood is higher than 
that in portal or arterial blood. Gasser et al. lo6 suggest that 
the rapid turnover of plasma uridine indicates a role of this 
c~ulating NS in py~midine meta~lism by various tissues. 

Naturally occurring sources of NT in the adult diet prob- 
ably provide a balanced supply of preformed NT, while 
human milk is reported to contain relatively higher levels of 
py~mi~ne versus purine derivatives. The specific biologic 
effects of feeding individual NT and their related metabolic 
products require further investigation. 

Summary 
Dietary NT are reported to have significant effects upon 
lymphoid, intestinal and hepatic tissues, and lipid metabo- 
lism (Table 3). The mechanism remains unknown, and the 
nutritional role of NT remains controversial. However, 
maintenance of the endogenous NT supply via de novo 
synthesis and salvage is metabolically costly. Preformed 
NT supplied by the diet may contribute to tissue NT pools 
and thus optimize the metabolic function of rapidly dividing 
tissues such as those of the gastrointestinal and immune 
systems. 

An exogenous source of NT may be particularly impor- 
tant for individuals whose dietary intake of NT is low and/or 
whose tissue needs are increased, for example, rapidly 
growing infants fed most cow’s milk-based formulas and 
individuals with disease related immunosuppression, intes- 
tinal, or liver injury. Under these conditions, dietary NTs 
may play a role as conditionally essential nutrients. 

In addition to serving as nucleic acid precursors, NTs 
and their related metabolic products are potent inter- and 
intracellular biological mediators. Certain effects of dietary 
NT may relate to one or more of these impo~ant functions. 

Area for future study include: 

1. The absorption and metabolism of nucleic acids, NTs, 
NSs, bases, and related metabolic products in humans, 
and the effects of age and disease upon these activities. 

2. Dietary NT effects upon gut-associated lymphoid tis- 
sues. 

Table 3 Reported effects of dietary nucleotides in humans and 
in animals 

Human Animal 

Promotion of small intestinal 
growth + 

Increased small intestinal dissacharidase 
activity i-i- 

Intestinal hyperemia + 
Protection against diarrhea1 

disease + -t 
Effects upon stool flora -t 
Enhanced cellular immunity + +i- 
Enhanced humoral immunity + 
Effects upon hepatic composition + 
Increased blood levels of long chain 

polyunsaturated fatty acids +i- +/- 
Effects upon serum lipoproteins -+I- 
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3. The content of nucleic acid, NTs, NSs, bases, and their 
related metabolic products in human milk. 

4. The relative contribution of nucleic acid, NTs, NSs, and 
free bases to observed biologic effects, and the effects of 
individually administered purine and pyrimidine com- 
pounds. 
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